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Side-branch growth in two-dimensional dendrites. |. Experiments
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The dynamics of growth of dendrites’ side branches is investigated experimentally during the crystallization
of solutions of ammonium bromide in a quasi-two-dimensional cell. Two regimes are observed. At small values
of the Peclet number a self-affine fractal forms. In this regime it is known that the mean lateral front grows as
95 Here the length of each individual branch is shown to gfbefore being screened dffvith a power-law
behaviort®n. The value of the exponent,(0.5< a,<1) is determined from the start by the strength of the
initial disturbance. Coarsening then takes place, when the branches of gmale screened off by their
neighbors. The corresponding decay of the growth of a weak branch is exponential and defined by its geo-
metrical position relative to its dominant neighbors. These results show that the branch structure results from
a deterministic growth of initially random disturbances. At large values of the Peclet number, the faster of the
side branches escape and become independent dendrites. The global structure then covers a finite fraction of
the two-dimensional space. The crossover between the two regimes and the spacing of these independent
branches are characterized.
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I. INTRODUCTION ing observed on each side of the dendrite. These results sup-

The growth of monocrystals in an undercooled solutionPorted the hypothesis of the selective amplification of noise.
gives rise to the characteristic formation of dendrites. These Correlatively, working on the dendritic fingers generated
structures have a parabolic tip in two dimensi¢aarabo- in anomalous Saffman Taylor fingering, Rabaeidal. [8]
loid in three dimensionsdirected along one of the main were able to apply a localized disturbance of the parabolic tip
crystallographic directions where the growth is fastest. Exand to observe the growth and spreading of the resulting
perimental, numerical, and theoretical efforts have resultesvave packet. They observed directly, in the frame of refer-
in a complete understanding of the selection mechanisrence of the dendrite’s tip, that the waves which disturb the
[1-6] of the radiusp of the parabola in two dimensions or parabolic sides are advected away from the tip with a veloc-
paraboloid in three dimensions. This type of structure is inity which is larger than their own. This is the characteristic
fact an archetype of anisotropic growth in a diffusion field feature of a class of instabilities called convective instabili-
[7] and is also observed in other phenomena. Dendritic strudies in the context of fluid dynamics where they are common
tures can also be obtained in Saffman-Taylor viscous fingerin, e.g., shear flow instabilitiesee Ref[25] for a review.
ing [7,8] when a singular disturbance of the tip gives a pre-Their common feature is that they give rise to irregular struc-
ferred direction of growth to the viscous finger. Similar tures because the unstable medium serves as a selective am-
dendrites also grow in limited aggregatidbLA) in the  plifier of incident noise. In such instabilities, it is possible to
presence of anisotrofdy®,10]. replace the natural noise by a periodic forcing and thus to

While the tip of the dendrite is stable, lateral protrusionsgenerate a periodic structure. This was done in both dendritic
are observed to form and grow. In the frame of referenceviscous fingerg8] and dendrite$26,27.
moving with the dendrite tip, they form at some distance The period of exponential growth of the protrusions is
from the extremity, then grow in amplitude as they are ad-short, and followed by their transformation into proper side
vected away from the tip region. This is the side-branchindgoranches as they become sensitive to the crystallographic
phenomenon, which has already been widely investigatednisotropy. In the case of a cubic lattice where the main
[11-23, both in three dimensions and two dimensions. Ascrystallographic directions of growth af&00), the branches
already proposed some time ad8-16, side branching re- are perpendicular to the main dendrite. As they grow the
sults from the selective amplification along the parabolicbranches acquire a stable parabolic tip. The neighboring
profile of noisy fluctuations near the tip. The initial growth of branches interact because of the nonlocal nature of the dif-
these disturbances was investigated by Dougherty and Gafusion field in which they grow. Figureqdd) and Xb) shows
lub [17,18. These authors showed that the very early develiwo sketches of the isoconcentration lines, for slow and fast
opment of the protrusions is exponential. In their experimentgrowing dendrites, respectively. The growth and interaction
the typical initial spacing of the protrusions is of the order ofof the branches are expected to be different when their
5p (p being the parabola radius of curvaturBoth the initial  lengths are small compared to the local diffusion lerjily.
amplitude and the spacing of these protrusions tend to b&@)] or when both length scales are of the same order of
irregular and there is no correlation between the side branchmagnitude Fig. 1(b)].
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tuations due to the side-branching instability, this area is the
same(on the averageas that of a smooth parabolic shape.
The parameter of this average parabola is the same as that of
the stable dendrite. This means that the mean fractal object
occupies the same area that the dendrite would have covered
if it had remained a stable parabola with tip radjusThis
parabolic dependence of the unstable dendrite could be ex-
pected from Ivantsov'$1l] qualitative argument: the tip of
the dendrite moves at constant velocity so that its position is
proportional to timet; the growth of the lateral sides results
from a diffusive process and their position moves%s

In three dimensions the situation is slightly more compli-
cated[20-22. The dendrite has the shape of a paraboloid
only near the tip but the axisymmetry around the dendrite
axis breaks down even before the lateral destabilization. First
there is formation of four ridges which then destabilize to
form side branches. These grow in the main crystallographic
directions perpendicular to the dendrite’s direction. The cross
section of the dendrite thus develops in a four armed petal
shaped structure. K’ is their distance to the tip, the theoret-
ical prediction is that the mean length of these afr2$|
grows agx’[*® (i.e., ast®®) while their width in the orthora-
dial direction grows as$x’|*>. The growth in a paraboloid
mean shape is only recovered if an averaging is done over all
the radial directions around the axis of the dendrite.

In the present paper we will perform experiments aimed
at characterizing the late evolution of the side branches in an
approximately two-dimensional situation.

We will first study the regime of growth at very small

FIG. 1. (a), (b) Sketches of two dendrites growing at small and peclet numbers. The work will be focused on the character-
Ie_lrge_ velocity respectively and of the isoconcentration lines in theilization of the coarsening phenomenon responsible for the
vicinity. buildup of ever larger branches. This will shed light on how

A theoretical incentive for the study of the growth of slow 1€ growth of the average parabolic front can be sustained by
dendrites on a large scale comes from results obtained i eVver-decreasing number of branches. Some preliminary
anisotropic DLA, which showed the formation of a self- results about it were published in Rg24].
affine fractal structurg9,10]. In the context of crystal growth ~ We will then turn to the specific effects observed for
a fractal regime is only observed in the limit of very long- larger velocities and smallép. The same initial coarsening
range interaction and thus very large diffusion length. Thideads to a greater spacing of the growing side branches. But
was investigated in the quasi-two-dimensional situation byvhen this spacing becomes of the order of the local thickness
Couderet al.[19], in experiments performed in the crystal- of the mean diffusion front, the side branches have the pos-
lization of ammonium bromide diluted in water and con- sibility of escaping and form independent dendrites.
tained in a quasi-two-dimensional cell. Ahead of a crystalli-  Finally this first papetPart )) is exclusively experimental.
zation front growing at a velocity the impurity diffusive ~ Part Il is devoted to a phase field numerical computation of
field is characterized by its length scajg=2D/U whereD  this growth of the dendrites lateral branches.
is the diffusion constant. At weak under-cooling, the growth
is slow andly is so large that the distances between all
branches are small in comparison. In these conditions an
approximation of a Laplacian growth is obtained and the side We grow ammonium bromide crystals from supersatu-
branches are not free: they remain prisoners of the laterahted aqueous solution in conditions similar to those previ-
front of the main dendrite. Their velocity is not constant andously described19,28. The solution, of concentratiogy, is
they keep interacting, screening off the slow branches, smitially enclosed in a thin cell formed of two glass plates of
that the structure continues coarsening. This leads to theadius 50 mm. The distance between the plates is fixed by a
buildup of a self-affine fractal structure. The fractal dimen-mylar spacer of thickness=20 um. The cell is entirely im-
sion of such a dendrite was measuf&8], far from the tip, mersed in a circulation of water thermally regulated with an
by a box counting method and found to th&=1.58+0.03 in  accuracy of 20 mK. A few runs are first performed at large
agreement with the dimensidd;=1.57 found[10] for four- ~ undercooling so as to obtain several crystals in the cell. The
fold anisotropic DLA. cell is then warmed up so as to melt these crystals almost

In the same limit, the area occupied by the dendrite in twacompletely, leaving only a few germs. The desired under-
dimensions was also investigatEtd]. In spite of the fluc- cooling is then imposed and the growth of the dendrites can

Il. EXPERIMENTAL SETUP
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be observed. The experiment is only recorded when one isavaited long enough for the dendrite to have grown far away
lated, well oriented gerrtwith two [100] axis in the plane of from the germ. In the following, the axes of the laboratory
the cel) has been obtained. We then wait until a long den-frame of reference are chosen so that the dendrite grows
drite is obtained, far away from the boundaries and from thelong theO, axis and its branches alor@,. Taking the ori-
other main dendrites grown from the same germ. gin O’ at the dendrite’s tipd’,, O’y, will be the frame of

As the thermal diffusivity is three orders of magnitude reference moving with it.
larger than the mass diffusivity, the system is limited by mass  The results we will first report in detail were obtained on
diffusion for whichD=2x10"° m?/s. Several different so- g dendrite which grew with a velocity=3.77 um/s. Using
lutions were used for these experiments with concentrationg strong magnification we measured by image processing
corresponding to several equilibrium temperatiige Solu-  [28] the shape of the tip parabola and deduced a tip radius
tions with Te=35 °C were chosen for the cases where a;,=1 4+0.1um. This value corresponds to a valpédv/=k
small undercooling was to be applied, leading to slowly=75;m?3/s which is in good agreement with the value
growing dendrites. Fast dendrites were grown in solutiongound for crystals of NHBr grown in a solution withTg
with an equilibrium temperaturefg=50 °C where under- =35 °C, as reported by Mauret al. [28].
coolings as large as 35 °C could be chosen. Altogether, den- W then turn our interest to the large scale structure of the
drites growing in a very large range of velocities 3—@0/s  dendrite. The system is limited by mass diffusion for which
were thus obtained. _ _ _ the diffusion constant iD=2 10" m?/s, so that for this den-

The dendrites were observed with an inverted microscopgrite the Peclet numbéPe =pV/2D) is Pe~1073. At such a
which allowed magnifications up to 480. The growth was|ow velocity of growth the diffusion length is large and a
recorded with a video camera and digitized with a resolutiorse|f-affine regime of growth is observed in a large range of
768 by 512 pixels. We used four different magnificationsjength scales. As in our previous wo(€ouderet al. [19])
corresponding respectively to resolutions 0.36, 1.19, 2.9%he half area covered by the structu@n they’ >0 side

individual branches until they reached large amplitudes,

we generally used the magnification corresponding to S(x') = <%>1/2X,3/2 "

2.97 um/pixel so that the early growth of the side branching 9 '

was poorly resolved. For this reason, in the case of the den- . . . ,

drites of low velocities, before recording the branch growth,Wh_ereX IS t_he distance to the tip. This means that the self-

we briefly recorded the growth of the tip with a large mag_afflne dendrite _has a mean Iater_al front. The same front that

nification so as to measure its shape. The results, concerniffPuld have existed if the dendrite had not undergone a lat-

the relation between the selected radius of curvature and tHg@! destabilization and had remained parabolic. It is thus

velocity, were in good agreement with the values previousl ocated at

reported[28]. vy, = (2px')Y2, (2
Finally we can note that in spite of its small thickness

(e=20 um), the cell does not impose a strict two dimension-In the laboratory frame of reference, at a large distaxice

ality to the growth. The tip, having a radius smaller then from the tip, the velocity normal to this front is thus on the

remains a three-dimensional paraboloid. However, the limaverage

ited thickness prevents the growth of branches in the direc- - _ '

tion perpendicular to the cell’s plane. Furthermore, for the Un = (p2) M) 3)

slow dendrites, the cell thickness is always small comparedaking into account the selection of the tip radius by which

to the distance of the competing branches. The diffusion fielgh?v is a constank and the normal velocity becomes

in which these branches grow can thus be considered as two _

dimensional. The fact that most of our results are recovered Uy = 27 VY412, (4)

in strictly two-dimensional simulationtsee Part Il is con-

firmation of the validity of the two-dimension&2D) aproxi-

mation for the investigation of the side branches’ growth.

The decrease of the normal velocity along the mean para-
bolic profile induces an increase of the diffusion length. In
the tip region it isIB:ZD/V. But along the sides the diffu-
sion length,|5 grows with the distance to the tip as

Ill. EXPERIMENTAL RESULTS
|S _ @ g X/O.5 (5)
A. The self-affine growth, phenomenological characterization D™\ v p

of coarsening

in a given region of the laboratory frame of reference, the
1. Global structure diffusion length grows as the square root of time,
We will first investigate the regime of slow growth at |§, - ZerDk—1/4\/—1/4tl/2' (6)

weak undercoolings. A well oriented initial seed in a flat cell

gives rise to four arms. The diffusion length being large, In the case of the dendrite growing\dt3.77 um/s, the
these arms interact with each other so that each of thendiffusion length at the tip iSB:0.53 mm. In Fig. 2 going
grows in a petal shag@9]. Only the front part of each petal, from (b) to (d) the normal velocity of the mean front de-
can be considered parabolic. For this reason we alwaysreases from~0.1 to ~0.06 um/s. Correlatively, the diffu-
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as time elapses. The branches which stop growing remain as
fossil structures. Much later, however, it can be noted that
the tip of these branches becomes facetted, before eventually
melting. The sequence shown in Fig. 2 exhibits another ob-
vious feature. The largest branches were already locally
dominant at their formation. In other terms, the dominance of
a branch appears to be entirely determined from the start.
The following measurements set this observation on a quan-
titative basis.

On an image such as Fig(@ we use a home-made image
processing which detects the profile of the dendrite, then its
protrusions in theD, direction. Each of these protrusions is
ascribed a numben. It is easy to follow a branch on the
successive images because its abscigss practically con-
stant. The origin of the timé&, used for a given branch is
the time when the tip of the main dendrite has passed at the
abscissa,. We measure the position(t,) of the tip of each
branch as a function of its own time.

Figure 3a) shows the ploy,(t,) of the growing length of
five of the branches of the dendrite shown in Fig. 2. They all
have a velocity which decreases as a function of time. This
means that none of the lateral branches becomes a free den-
drite. All branches remain prisoner of the diffusion front of
the main dendrite. In a loose sense, the lateral branches can
thus be considered as dendrites resulting from the instability
of a directional growth in the mean diffusion field imposed
by the main dendrite. As time elapses the front slows down
and this diffusive field thickens: correlatively there is coars-
ening and the wavelength separating active branches keeps
increasing.

A remarkable result is that the hierarchy of size of the
branches is fixed initially at the formation of the lateral
branches. A better characterization is obtained in a log-log
plot [Fig. 3(b)] where each branch is observed to be fitted by
a power law growth of the type

. Ya(t) = ypto". (7)
sion length grows fromp ~2 mm to ~3 cm. These values The velocities thus all decrease with time \4gxt“1, The

Z:weda:glvt?(/esirvseZ(ii?lrgeTaLSecgenlﬁﬁirflgnteostshg sslrzneaﬁfggigr?n;g%iponentan is constant for a given branch but depends on
P g- P ow dominant the branch is at the start, i.e., how strong the

;?r#%'n:%r:g?t the diffusion field can be considered as tWOmitial disturbance was. The values of thgfor the branches

of Fig. 2 are given in Table I. For this dendrite, they range
from 0.51 to 0.64. We can note that this power law behavior
is only observed in a finite range of values tofAt large

The dendrite is observed with a microscope and a videdimes the velocity of all observed branches decreases due to
camera which records a fixed field that the dendrite crosseeir screening off by faster branches. Even branch 6, which
during its growth. Figure 2 shows five images of such ais the fastest, is observed to slow down at times larger than
recording concerning 2.2 mm of the length of the dendrite2000 s as it begins to be screened off by a larger branch
Note that this region was more than 1 cm away from theocated outside the observed region. This screening effect is
initial seed so that the influence of the other dendrites growmnalyzed in Sec. Ill A 3.
from the same seed was negligible. In this case the growth These results suggest that the stronger the initial distur-
was observed during a period of an hour and a half. Figuréance, the larger the growth exponents. For this reason it is
2(a) is typical of the first frames where the tip region of the interesting to observe situations in which a dendrite is sub-
dendrite is observed. The distribution of branches resultingnitted accidentally to a strong localized disturbance. Figure
from the primary instability form an irregular array with 4 shows such an event where a dendrite of velocityuh¥/s
branches having an initial average spacing of approximatelgollided with a speck of dust present in the cell. The violent
5p and various amplitudes. The four others show the typicatlisturbance of the tip leads to a symmetrical destabilization
evolution of the side branches. The process of coarsening if the front which already has a finite amplitude very close to
clearly visible: fewer and fewer branches continue growingthe tip [Fig. 4(@]. As a result, two symmetrical branches

FIG. 2. Five photographs taken respectively at a tigpiandt,
+300 s,t,+660 s,t,+1260 s,t,+3180 s, of one side of a dendrite
growing at low velocityV=3.77 um/s. The length of the region
shown here is of the order &=2.2 mm. The label§l)- - -(10) show
the branches which have been investigated.

2. The growth of the dominant branches
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TABLE I. Growth exponenty, and screening parametersand
S for branches 1-8.

Branch

Qanp

Yo

S

0.58+0.01
0.51+0.01
0.54+0.01
0.53+0.01

0.7
0.75
0.77

0.5
0.45
0.4
0.45

0.54+0.01 0.73
0.64+0.01

0.52+0.01 1.0 0.46
0.57+0.01 0.9 0.42

o ~NOoO O WN PR

Fig. 3 where the branchdg.g., 2 and Jreach asymptotic
lengths, y¥'® and y¥® respectively. These branches have
stopped growing because of the screening effect due to faster
growing branches. This effect is dominated by the geometri-
cal positions of neighboring branches as can be observed in
Fig. 2. Neglecting the curvature of the parabola near the tip,
the relative position of these branches can be sketfhRied

6(a)] as uneven branches growing from a linear base. On this
sketch we draw two straight lines from the extremity of each
branch and tangent to the most protruding neighboring struc-
tures. Whenever these neighbors are larger, they have larger
a,’'s so that the difference in size will increase with time. The
velocity of the small branch then decreases until it finally
stops completely. This process repeats itself, leading to a
hierarchy of screening-off processes proceeding from the
nearest to the furthest. On Figab branchn will be screened

10 S Y S Y P )
10 100 1000 10
(b) t(s)

FIG. 3. (8 The lengthsy,(t,) of the lateral branched), (2), (3),
(4), (6), as a function of timein seconds Branches 2 and 4 reach
limit lengthsy}'® andy}'®* respectively. The dotted line shows the
linear motionx(t) of the tip of the dendrite on the same scdl®.
Logarithmic plot for brancheél), (2), (3), and(6). The best fits for
the power law regions correspond 49=0.58, @, =0.51, a;3=0.54,
ag=0.64, respectively.

form, which grow faster than usual. Their initial growth ve-
locity is close to being//2, half of the velocity of the main
dendrite,(see below Sec. Il BR The logarithmic plotFig.

5) shows that these branches also have a power law growth
of the type given by Eq(7) but with an unusually large value
«=0.80. Such branches are naturally dominant over their
neighbors. In this range of Peclet numbers and in observed
regions as large as 1 cm they are observed to slow down
(a<1) and thus they still remain prisoner of the mean lateral

front.

3. The slower branches’ screening off

(@)

(b)

FIG. 4. Four photographs taken, respectively, 1, 3, 5.4, and

The second process is screening off. As time passes, this.1 s, after the collision of a dendrite growing at velocity

slower branches stop growing altogether. This is observed in7.7 um/s with a finite disturbance.
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turbed dendrite of Fig. 4 and of the length of its main lateral branch [ 4
as a function of timgin seconds This branch grows ag* with 1.5 -
ap=0.80. [ ]
. [ 34
off by p andq, then branchp will be screened off by and 17 tan(9,)
r and laterq will stop because of the influence ofands. o w,.-r""""
The process repeats itself on larger and larger scales. [ tan(eﬁ):
If yMa is the maximum length reached by branciwe 0.5 4
define the nondimensional quanti¥y as i 1
of ]
Max L 4
Yn 7Y I ]
Yn = nTaxn. (8) L 4
yn _0.5 1 PR N AT Y TR T S | IR W N T W S
_ o 1000 2000
The geometrical situation of the branchetweerp andq (b) t(s)

is characterized by the screening anglés and ¢ as
sketched in Fig. @). It turns out that the dynamically rel-
evant parameter is

(a)

r P n q s
(b)
1
yp [~ - / e }'q
~ -~
e -
e b
S d
-~ ”~
el . - - - 62
¥n
Xp Xn Xq

FIG. 7. (a) Semilogarithmic plot ofY, as a function of5,, show-
ing the range of logarithmic decay of the growth of branch 4 of Fig.
2 when screened off by branches 3 andl$.Linear plot of tanaf{
and tand§ and of their suns, as a function ot,.

S,=tand +tan 6! 9

with tan 6= (y,—yn)/ (Xp=X,) and tandi=(y,—yn)/ (Xq=Xn).
The time evolution o, can be computed from the measured
Yn(tn), Yp(tp), Yq(ty). Figure 7a) is a semilogarithmic plot of
Y,(t) as a function ofS,(t) for branch 4. An exponential
decay is clearly observed showing th@tand S, satisfy

Yn=Yoexp- §/S). (10)

The two parameter¥, and S, are obtained from the best
fits of the linear part of the semilog ploffig. 7(a)]. The
values found for various branches are approximately con-
stant and given in Table I. It can be noted that they depend
neither on the scale of the process nor on the symmetry or
asymmetry of the positions of branchesndq with regard

FIG. 6. (a) Sketch of the relative positions of branches resultingto branchn. The mean value o, is 0.44. The values oY,
from the primary instability(b) Definition of the screening angles are more scattered. When the screening-off process of branch
6P and 69 when branch is screened off by branchgsandq. n begins early we find values of,~ 1. This value is found
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when branch is mainly screened by a previous branehn

the opposite situation where the main screening comes fron
a branchq, grown aftern, we obtainY,~0.75. From these
values we can deduce that in a symmetrical situation, branct
n will reach an amplitude 0.94'® for ¢1=¢=45.4°(Y,

~1) or for i=#1=43.5%(Y,~0.75.

We have thus defined the screening-off process in purely
geometrical terms. Can this lead to a temporal description of
the growth of a given branch? We find empirically that the
time evolution of the screening factor is lindaee Fig. )]
so thatS can be written

S=a+bt, (11)

as a result combining relatiori8) and(9) the time evolution
of the branch length can be written

Yo =Yn {1 -\ expl— uty)] (12)

FIG. 8. Photograph of the tip of a fast dendrite in the regime of

. tip oscillations.
with A =Yg exp(-a/S) and u =b/S,.

nearer to the tip. Correlatively there is a shift of the values of

The growth of an infinite array of parallel needles in a .
. . . . the growth exponentsa,, resulting from the normal fluctua-
Laplacian field was investigated by M. Adda Beg80]. In tions. They are found to range from 0.6 to 0.9 for a dendrite

his lattice shorter and larger needles alternate. The small%rf velocity 20um/s and from 0.8 to 1 for a dendrite of

needles are then observed to undergo an exponential deca flocity 50 um/s. As previously, the value of an, depends

There are differences between this theoretical situation an?n the amplitude of the initial disturbance of the parabolic
;

needios 1 fiie, and there ia no central base from whigffO": FOr V=50 um/s large amplitude disturbances occur

the needles grow1 However, the screening effect is of theore frequently and generate branches which grow with ,

same nature as observe d e)éperimentally =1 and thus a constant velouty. A'rer'n:_;lrkable result is that in

' those cases the branch velocity is initially half that of the
dendrite(as will be seen below in Fig. 10This is in agree-
ment with a recent finding by Hakif81] in a model system.
1. Global structure Working on linear needles growing in a Laplacian field, he

) considered a situation where, on a semi-infinite needle, two

The global structures of slow and fast 2D dendrites ar,era) pranches grow at a right angle. He finds analytically a

very different. As discussed above, the slow dendrites arg,qific solution in the shape of a cross where the velocity of
self-affine fractals which retain a global parabolic mean e two branches is half that of the main needle.

shape. The velocities of their branches are always small com- | i1 range of velocities 50V < 100 um/s the tip itself

pared to that of the main dendritic tip. In contrast, the fasty,ears strongly disturbed by instabilities which generate
dendrites cover a finite fraction of the 2D space and have geq,ent and large lateral disturbances. In this instability the

wedge shap_ed envelope as a result_ Of_ the VQIOCiW.Of .thﬁp suddenly slows down and splits asymetrically, generating
branches which equals that of the main tip. The investigation, secondary tips of unequal length. Unlike what is ob-

of the growth of individual branches sheds some light on these e at larger velocities, this tip splitting fails to produce

origin of the crossover between these two regimes of growthy,, independent structures. The larger of the two tips accel-

Two main features are observed which will be described SuCs a5 while the other stops. This leads to the formation of a

cessively. Near the tip there is a quantitative c_hange in_thﬁew single tip, which in turn will become unstable by a new
values of the growth exponents. Far from the tip, there is g, gjitting. The whole structure thus undergoes relaxation
qualitative change as some branches escape from the diffiygcijiations. It is not known if this is an intrinsic destabiliza-
sion field of the main dendrite. tion mode, or if this instability is generated by an interaction
with the cell’s walls. A quantitative investigation of the tip
structure in this range of velocities would have required

In the range of velocities 20V <50 um/s, as the diffu- working with a fast camera and was not the aim of the
sion length diminishes, different processes appear, both negresent paper. It is worth mentioning, however, because of its
the tip and away from it. In all this range of velocities the implication on the behavior of lateral branches on a long
dendrite is still observed to have a classical parabolic extime range. Each tip splitting is a strong disturbance where
tremity and the same mode of initial destabilization. Thetwo symmetrical side branches of large amplitude are gener-
above-described processes of competition between branchated (Fig. 8). Finally, at very large velocities the tip of the
are still observed. However, compared to the previous exdendrite can also undergo a complete tip splitting. As shown
periments the rate of growth of the lateral instability is nowin Fig. 9, this gives rise to two dendrites which will continue
larger and the destabilization of the parabolic front occurggrowing alongside each other.

B. Growth at large velocities

2. The initial behavior of the fast branches
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branch as a function of tim@ig. 10. In the initial region(l)
the branch is prisoner of the main dendrite and grows with a
power law of time(on the example shown hete=1). Then
it accelerategregion ll). Ultimately, in region Ill, the veloc-
ity becomes constant and equal to the velo¥itgf the main
dendrite. The branch has then escaped the main dendrite’s
diffusion front, to become an independent dendrite. For den-
drites with V<40 um/s, this escape was only observed to
occur for those fast branches which resulted from an anoma-
lous strong disturbance of the tip. If a dendrite is grown in
the same conditions as those of Fig. 10, but without under-
going any finite disturbance, no branch escapes in the limited
duration of our experiment.

Four successive images of a faster dendrite
=51 um/9) are shown in Fig. 11. In the tip region the struc-
ture is similar to that discussed above, and the branches are
still disturbances of a dendrite which remains parabolic on
the average. At a certain distance from the tip some branches
are repeatedly observed to accelerate until they reach the

FIG. 9. Photograph of a dendrite of velocit4=51 um/s after ~ velocity V of the main dendrite. The most obvious feature of
its tip has split. the side of the global structure of a fast dendrite is that it is

formed of independent parallel branches, all growing at the
3. The escape of branches same velocity(Figs. 11 and 12 On a given dendrite, the

We can now turn to the evolution of branches, as observeBranChes which escape reach the same velocity after ap_proxi-
on a long time scale, using a weaker maghnification of thénately the same delay so that the global structure acquires
microscope. ' a wedge shape. This organization is obvious on a photograph

For dendrites with 26V<50 um/s, the branches usu- (Fi9- 12 of a very fast dendrit¢V=87 um/s) at a weak

ally have the same evolution as described in Sec. Il A: therdnagnification. Two straight lines at 45° from the direction of
is coarsening and fewer and fewer branches continue grov&he initial dendrite form the envelope of the branches. The

ing as time elapses. In the cases where the dendrite has upifucture, though complex, is no longer a self-affine fractal;
dergone a finite disturbance something different occurs. Afnside the wedge the pattern covers a finite fraction of the 2D

some distance away from the tip the resulting branch is obSPace. The tip of the main dendrite protrudes slightly at the
served to accelerat@ig. 10, inseY, before again reaching a vertex of the wedge. This is related to the delay necessary for

constant velocity. Three successive regimes of growth arthe branches to free themselves. At large velocities, branches

clearly identified on the plot of the length of the dominant 9rOWing with @~1 become frequent as the loss of stability
of the tip creates large initial disturbances, and the diffusive

field becomes thinner. As a result the initial region of growth
(region | in Fig. 10 becomes shorter and the fit by a power
law becomes less and less accurate. Some branches are ob-
served to have a velocity increasing with time very shortly
after their formation. It is not clear if they have a growth
exponentw>1 or if this is the effect of the crossover regime

of region II.

Two typical lengths can be measured. The firstzighe
distance from the tip at which the branches become free.
This length idg=7V wherer is the typical escape time of the
branches. This time is measured with a rather good accu-
racy on plots of the type of Fig. 10, where it is the limit
between regions Il and Ill. On various dendrites obtained at
different undercoolings the evolution of this time with the
1 velocity was measured. As shown in Fig.(43 7 diverges at
PR R I T low velocities. The second typical length is the distance be-
0 10 20 30 40 50 tween free branches. Since they are not evenly spaced, we
(s) measured the distancasof as many free branches as pos-

sible and deduced an average valuaVe then repeated the

grown atV=39.9 um/s and of its main lateral branch as a function measurements on den_d_rltes grown at various velocities. In
of time. The three regimes of growth are labeled I, II, and IlI. The the low range of velocities the free branches are scarce so

time of escaperis the limit separating Il from I11. Inset: photograph  that the average values are not precise. For a given dendrite
of this dendrite. the two lengthdz=7V and\ have similar values.

400 [

FIG. 10. Linear plot of the position of the tip of a dendrite
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(c)
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FIG. 12. Photograph of the global structure of a dendrite grow-
ing at velocityV=87 um/s. The length of the region shown here is
L=3.6 mm.

side branches differs from that of the independent growth of
parallel dendrites. In order to become free, the branches must
first escape out of the diffusion field of the lateral side of the
primary dendrite. For very fast dendrites this occurs rather
close to the tip in a region where the lateral front is still
! ‘ growing fast and the diffusion length is of the ordeﬂb.fln
contrast, in slower dendrites, the escape occurs much further
away from the tip in a region where the mean motion is slow
FIG. 11. Four photographs taken respectively at a tigpand  and where the local diffusion length has thus become large.
t,+9.2'5,1,+13 5,1,+20 s, of one side of a dendrite growing at Only branches much further away from each other can then
velocity V=64 um/s. The length of the region shown here is of the hecome independent.
order ofL=2.2 mm. A reasonable assumption is that a branch can only become
_ free when it has become larger than some fraction of the
If both Iz=7V and \ obtained for various dendrites are local mean diffusion length of the lateral front. This length at
plotted as a function of the diffusion Ienglb at the tip, no  a given abscissa grows as the square root of tinieslation
simple relation is found. In particular for slow dendrites (6)]. Since the growth exponents, are larger than 0.5, the
=7V and\ become very large as compared! o This may branches can, in principle, approach the diffusion front.
appear surprising because the independent growth of differ- For these reasons the relevant comparison is that of both
ent dendrites would be expected to occur whenever the detz=7V and\ with the local lateral diffusion Iengtlﬁ in the
drites are separated by a distance larger than a few diffusioregion where this escape occurs. This lerigtican be com-
lengths. But the question of the independent growth of twaqputed fixingt=7in relation(6) and using the values @ and
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100 ————

T ———————— The linear relation13) can be used to find an empirical
! 1 relation for the timer as a function o¥. In our experimental

! ] conditions(i.e., D=2X10"° m?/s and p?V=k=7.5 um?/s)
80| 4 we find

J 7= (4% 1PV 25 (14)

i which provides a good fit for the measured valyé&s.

13@)].

T (s)

] ]
40 = 4 IV. DISCUSSION AND CONCLUSION

The measurements performed on very slow dendrites
20l \ ] have provided a phenomenological description of a process
N ] which could be called convective coarsening. Doughetty
" e ] al.l’ recorded, as a function of time the half width of the

1 dendrite at a constant distance from the tip. Close to the tip
0 50 100 150 the power spectrum corresponds to the oscillations due to the
@) V(um/s) formation of the branches. This spectrum exhibits a broad
peak at a temporal frequenéycorresponding to a maximum
T T P of the amplification in the tip region. This maximum corre-
1 sponds to the observed mean wavelength of the side
branches which is of the order op4n this region. However,
_ all the frequencie$ < f, are also amplified and there is a shift
Mpm) 1 ] towards more amplification of the low frequency further
2000 [ h away from the tip, as coarsening takes place.

r A way to understand this process is to note that the mean
normal velocity of the lateral front of a dendrite decreases
L ] constantly because of the curvature of the parabola. In order
[ ] to understand the wavelength selection near the tip, Caroli
al. [16] used this argument to perform a modified version of
the Mullins and Sekerka linear stability analysis. They com-
puted the shift of the most amplified wavelength as the dis-
L ; ] turbance is advected away from the tip. Their analysis was
L ] classical with the surface tension being the stabilizing factor
I F ] of the instability.

o e e ] Here the coarsening should rather be analyzed in the
0 5000 11¢* 1.5 10* framework of the mean field theory introduced by Breaer
(b) 1 (uwm) al. [31,32. In this theory the Laplacian itself plays the role
of an effective surface tension. It should be noted that the
FIG. 13. (@) Evolution of the time of escapeas a function of  coarsening observed here concerns highly nonlinear spiky
the dendrite’s velocity. The curve is the fit by relatiofil4). (b)  branches which are very different from the growth of a sinu-
Plot of the length of escapeV (black dot$ and of A the mean soidal disturbance of weak amplitude. However, the general
distance between free branchepen trianglesas a function of 5 process is the same; as the wave packets are advected away
the lateral diffusion length in the region of escape. The line is the fifrom the tip, the normal velocity decreases and the range of
by relation(13). amplified wavelengths shifts to larger and larger values. Con-
stantly decreasing frequencies of the initial noise are thus
k specific to our experiment. The resulting plot#f andf, amplified. This is ye_t anot_h.er generalizgtio_n of the convec-
as a function oﬂg, given on Fig. 18) shows a linear de- tive character of the instability8]. From this viewpoint there

pendence. In our experimental conditions the best fit is is a striking analogy of the coarsening with the evolution of
the instabilities of a shear flow in the mixing layer configu-

A~ (0.1810.03I§. (13) rgtion [_25]. In _such experirr_]ents the initial desta_bilization
gives rise to irregular vortices with a preferential wave-
In other terms, as time passes, a branch can escape outlehgth. Further downstream, as the shear layer becomes
the mean lateral front when its distance to the @@p its  thicker, there is an amplification of lower frequencies and the
distance to its neighbordecomes larger than a fifth of the vortices undergo pairing processes by which the pattern’s
local diffusion length. It can be noted, however, that the datavavelength grows.
for very slow dendrites are slightly above the linear fit. This The same process can also be understood as the result of
could be due to the scarcity of branches with largeat the competition of parallel needles growing in a long-range
these velocities. diffusion field. In this perspective a slightly larger branch

000

TV(um) |

1000 | ]
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grows faster than its neighbors by a simple point effect. It ACKNOWLEDGMENTS
does so at the expense of the growth of its neighbors. Since We are grateful to M. Adda Bedia, V. Hakim, and P.

the mean growth is always maintained, the material tha'tl'abelin for useful discussions during the course of this
would have crystallized on the weaker branches is redistrib- 9 9

uted and contributes to the growth of faster branches Wit%g;ke.rx\l/e dzaeckT:\\;\éI:ggaeCiZF:fsrlg::) smijpr)]p()joer: Olirg}gc? Irﬁlggon

larger a,,. As a dominant branch grows, however, it become

sensitive to the presence of other dominant branches locat 1 M2003-07850-C03-02 and BFM2003-07749-C05-04.
at larger distances along the lateral front. We have shown
that this screening is a function of the sum of tangents of the

anglesf, and 6. It will only have a noticeable effect when A phenomenological description of this process can be
the lengths (or rather the length differencesof these given in the following way. The largest values of the are
branches will become comparable to their spacing. In praca function of the dendrite’s velocity. In a piecewise linear
tice, with branches resulting from the normal noise, thegpnroximation we find that!™~0.5+0.0% for 10<V
screening effect remains weak between branches separatedso ,m/s, anda'®=1 for V=50 um/s.

by a distance larger than their own length. If we write that a branch becomes free when its length
For faster dendrites, the range of values of the exponentsyyals the local diffusion length of the mean front we get

a, corresponding to the normal random fluctuations of the

tip, shifts to larger values. This can be understood if we 054001 2\ o5

consider the same disturbance of the interface in dendrites of V2pVt =\2D /K/ L (A1)

various velocities. The smaller the diffusion length, the

larger the number of isoconcentration lines disturbed by a We use the selection condition of our dendrite. In our

protrusion of a given amplitude. For this intuitive reason theexperimental conditions we foungfV=7.5 um?/s.

APPENDIX

same disturbance will grow with largers in faster den- For V<50 um/s the fastest branches catch up the mean
drites. This is confirmed by the results of the simulationsdiffusion front at a time
using the phase field model presented in Part II. op |\ (10.0M)

For fast dendrites there is a crossover; at a certain distance = ( #) (A2)
from the tip, the dominant branches are observed to acceler- N7.5V

ate before reaching the constant velocity of a free dendrite. For velocities larger than 5am/s the fastest branch

The transition to this regime of growth IS subcritical: in the row with a,=1 so that there is a crossover to a value of this
intermediate range, the branches resulting from the norm )

noise at the tip remain prisoner of the thickening lateral dif- '

fusion field of the dendrite. Only branches due to a large 2D \?

disturbance of the tip can reach the escape velocity. At very "\ 5o
" . . V7.5V

large velocities this escape occurs near the tip so that a

wedge shaped array is formed, which occupies a finite fracThese times provide an empirical fit to the observed values

(A3)
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