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The dynamics of growth of dendrites’ side branches is investigated experimentally during the crystallization
of solutions of ammonium bromide in a quasi-two-dimensional cell. Two regimes are observed. At small values
of the Peclet number a self-affine fractal forms. In this regime it is known that the mean lateral front grows as
t0.5. Here the length of each individual branch is shown to growsbefore being screened offd with a power-law
behaviortan. The value of the exponentans0.5øanø1d is determined from the start by the strength of the
initial disturbance. Coarsening then takes place, when the branches of smallan are screened off by their
neighbors. The corresponding decay of the growth of a weak branch is exponential and defined by its geo-
metrical position relative to its dominant neighbors. These results show that the branch structure results from
a deterministic growth of initially random disturbances. At large values of the Peclet number, the faster of the
side branches escape and become independent dendrites. The global structure then covers a finite fraction of
the two-dimensional space. The crossover between the two regimes and the spacing of these independent
branches are characterized.
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I. INTRODUCTION

The growth of monocrystals in an undercooled solution
gives rise to the characteristic formation of dendrites. These
structures have a parabolic tip in two dimensionssa parabo-
loid in three dimensionsd directed along one of the main
crystallographic directions where the growth is fastest. Ex-
perimental, numerical, and theoretical efforts have resulted
in a complete understanding of the selection mechanism
f1–6g of the radiusr of the parabola in two dimensions or
paraboloid in three dimensions. This type of structure is in
fact an archetype of anisotropic growth in a diffusion field
f7g and is also observed in other phenomena. Dendritic struc-
tures can also be obtained in Saffman-Taylor viscous finger-
ing f7,8g when a singular disturbance of the tip gives a pre-
ferred direction of growth to the viscous finger. Similar
dendrites also grow in limited aggregationsDLA d in the
presence of anisotropyf9,10g.

While the tip of the dendrite is stable, lateral protrusions
are observed to form and grow. In the frame of reference
moving with the dendrite tip, they form at some distance
from the extremity, then grow in amplitude as they are ad-
vected away from the tip region. This is the side-branching
phenomenon, which has already been widely investigated
f11–23g, both in three dimensions and two dimensions. As
already proposed some time agof13–16g, side branching re-
sults from the selective amplification along the parabolic
profile of noisy fluctuations near the tip. The initial growth of
these disturbances was investigated by Dougherty and Gol-
lub f17,18g. These authors showed that the very early devel-
opment of the protrusions is exponential. In their experiment,
the typical initial spacing of the protrusions is of the order of
5r sr being the parabola radius of curvatured. Both the initial
amplitude and the spacing of these protrusions tend to be
irregular and there is no correlation between the side branch-

ing observed on each side of the dendrite. These results sup-
ported the hypothesis of the selective amplification of noise.

Correlatively, working on the dendritic fingers generated
in anomalous Saffman Taylor fingering, Rabaudet al. f8g
were able to apply a localized disturbance of the parabolic tip
and to observe the growth and spreading of the resulting
wave packet. They observed directly, in the frame of refer-
ence of the dendrite’s tip, that the waves which disturb the
parabolic sides are advected away from the tip with a veloc-
ity which is larger than their own. This is the characteristic
feature of a class of instabilities called convective instabili-
ties in the context of fluid dynamics where they are common
in, e.g., shear flow instabilitiesssee Ref.f25g for a reviewd.
Their common feature is that they give rise to irregular struc-
tures because the unstable medium serves as a selective am-
plifier of incident noise. In such instabilities, it is possible to
replace the natural noise by a periodic forcing and thus to
generate a periodic structure. This was done in both dendritic
viscous fingersf8g and dendritesf26,27g.

The period of exponential growth of the protrusions is
short, and followed by their transformation into proper side
branches as they become sensitive to the crystallographic
anisotropy. In the case of a cubic lattice where the main
crystallographic directions of growth ares100d, the branches
are perpendicular to the main dendrite. As they grow the
branches acquire a stable parabolic tip. The neighboring
branches interact because of the nonlocal nature of the dif-
fusion field in which they grow. Figures 1sad and 1sbd shows
two sketches of the isoconcentration lines, for slow and fast
growing dendrites, respectively. The growth and interaction
of the branches are expected to be different when their
lengths are small compared to the local diffusion lengthfFig.
1sadg or when both length scales are of the same order of
magnitudefFig. 1sbdg.
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A theoretical incentive for the study of the growth of slow
dendrites on a large scale comes from results obtained on
anisotropic DLA, which showed the formation of a self-
affine fractal structuref9,10g. In the context of crystal growth
a fractal regime is only observed in the limit of very long-
range interaction and thus very large diffusion length. This
was investigated in the quasi-two-dimensional situation by
Couderet al. f19g, in experiments performed in the crystal-
lization of ammonium bromide diluted in water and con-
tained in a quasi-two-dimensional cell. Ahead of a crystalli-
zation front growing at a velocityU the impurity diffusive
field is characterized by its length scalelD=2D /U whereD
is the diffusion constant. At weak under-cooling, the growth
is slow and lD is so large that the distances between all
branches are small in comparison. In these conditions an
approximation of a Laplacian growth is obtained and the side
branches are not free: they remain prisoners of the lateral
front of the main dendrite. Their velocity is not constant and
they keep interacting, screening off the slow branches, so
that the structure continues coarsening. This leads to the
buildup of a self-affine fractal structure. The fractal dimen-
sion of such a dendrite was measuredf19g, far from the tip,
by a box counting method and found to bedf =1.58±0.03 in
agreement with the dimensionsdf =1.57d foundf10g for four-
fold anisotropic DLA.

In the same limit, the area occupied by the dendrite in two
dimensions was also investigatedf19g. In spite of the fluc-

tuations due to the side-branching instability, this area is the
sameson the averaged as that of a smooth parabolic shape.
The parameter of this average parabola is the same as that of
the stable dendrite. This means that the mean fractal object
occupies the same area that the dendrite would have covered
if it had remained a stable parabola with tip radiusr. This
parabolic dependence of the unstable dendrite could be ex-
pected from Ivantsov’sf1g qualitative argument: the tip of
the dendrite moves at constant velocity so that its position is
proportional to timet; the growth of the lateral sides results
from a diffusive process and their position moves ast0.5.

In three dimensions the situation is slightly more compli-
catedf20–22g. The dendrite has the shape of a paraboloid
only near the tip but the axisymmetry around the dendrite
axis breaks down even before the lateral destabilization. First
there is formation of four ridges which then destabilize to
form side branches. These grow in the main crystallographic
directions perpendicular to the dendrite’s direction. The cross
section of the dendrite thus develops in a four armed petal
shaped structure. Ifx8 is their distance to the tip, the theoret-
ical prediction is that the mean length of these armsf21g
grows asux8u3/5 si.e., ast3/5d while their width in the orthora-
dial direction grows asux8u1/5. The growth in a paraboloid
mean shape is only recovered if an averaging is done over all
the radial directions around the axis of the dendrite.

In the present paper we will perform experiments aimed
at characterizing the late evolution of the side branches in an
approximately two-dimensional situation.

We will first study the regime of growth at very small
Peclet numbers. The work will be focused on the character-
ization of the coarsening phenomenon responsible for the
buildup of ever larger branches. This will shed light on how
the growth of the average parabolic front can be sustained by
an ever-decreasing number of branches. Some preliminary
results about it were published in Ref.f24g.

We will then turn to the specific effects observed for
larger velocities and smallerlD. The same initial coarsening
leads to a greater spacing of the growing side branches. But
when this spacing becomes of the order of the local thickness
of the mean diffusion front, the side branches have the pos-
sibility of escaping and form independent dendrites.

Finally this first papersPart Id is exclusively experimental.
Part II is devoted to a phase field numerical computation of
this growth of the dendrites lateral branches.

II. EXPERIMENTAL SETUP

We grow ammonium bromide crystals from supersatu-
rated aqueous solution in conditions similar to those previ-
ously describedf19,28g. The solution, of concentrationco, is
initially enclosed in a thin cell formed of two glass plates of
radius 50 mm. The distance between the plates is fixed by a
mylar spacer of thicknesse=20 mm. The cell is entirely im-
mersed in a circulation of water thermally regulated with an
accuracy of 20 mK. A few runs are first performed at large
undercooling so as to obtain several crystals in the cell. The
cell is then warmed up so as to melt these crystals almost
completely, leaving only a few germs. The desired under-
cooling is then imposed and the growth of the dendrites can

FIG. 1. sad, sbd Sketches of two dendrites growing at small and
large velocity respectively and of the isoconcentration lines in their
vicinity.
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be observed. The experiment is only recorded when one iso-
lated, well oriented germswith two f100g axis in the plane of
the celld has been obtained. We then wait until a long den-
drite is obtained, far away from the boundaries and from the
other main dendrites grown from the same germ.

As the thermal diffusivity is three orders of magnitude
larger than the mass diffusivity, the system is limited by mass
diffusion for which D=2310−9 m2/s. Several different so-
lutions were used for these experiments with concentrations
corresponding to several equilibrium temperatureTE. Solu-
tions with TE=35 °C were chosen for the cases where a
small undercooling was to be applied, leading to slowly
growing dendrites. Fast dendrites were grown in solutions
with an equilibrium temperature.TE=50 °C where under-
coolings as large as 35 °C could be chosen. Altogether, den-
drites growing in a very large range of velocities 3–90mm/s
were thus obtained.

The dendrites were observed with an inverted microscope
which allowed magnifications up to 480. The growth was
recorded with a video camera and digitized with a resolution
768 by 512 pixels. We used four different magnifications
corresponding respectively to resolutions 0.36, 1.19, 2.97,
and 4.76m /pixel. Since we wanted to record the growth of
individual branches until they reached large amplitudes,
we generally used the magnification corresponding to
2.97mm/pixel so that the early growth of the side branching
was poorly resolved. For this reason, in the case of the den-
drites of low velocities, before recording the branch growth,
we briefly recorded the growth of the tip with a large mag-
nification so as to measure its shape. The results, concerning
the relation between the selected radius of curvature and the
velocity, were in good agreement with the values previously
reportedf28g.

Finally we can note that in spite of its small thickness
se=20 mmd, the cell does not impose a strict two dimension-
ality to the growth. The tip, having a radius smaller thand,
remains a three-dimensional paraboloid. However, the lim-
ited thickness prevents the growth of branches in the direc-
tion perpendicular to the cell’s plane. Furthermore, for the
slow dendrites, the cell thickness is always small compared
to the distance of the competing branches. The diffusion field
in which these branches grow can thus be considered as two
dimensional. The fact that most of our results are recovered
in strictly two-dimensional simulationsssee Part IId is con-
firmation of the validity of the two-dimensionals2Dd aproxi-
mation for the investigation of the side branches’ growth.

III. EXPERIMENTAL RESULTS

A. The self-affine growth, phenomenological characterization
of coarsening

1. Global structure

We will first investigate the regime of slow growth at
weak undercoolings. A well oriented initial seed in a flat cell
gives rise to four arms. The diffusion length being large,
these arms interact with each other so that each of them
grows in a petal shapef29g. Only the front part of each petal,
can be considered parabolic. For this reason we always

waited long enough for the dendrite to have grown far away
from the germ. In the following, the axes of the laboratory
frame of reference are chosen so that the dendrite grows
along theOx axis and its branches alongOy. Taking the ori-
gin O8 at the dendrite’s tipO8x8

, O8y8
will be the frame of

reference moving with it.
The results we will first report in detail were obtained on

a dendrite which grew with a velocityV=3.77mm/s. Using
a strong magnification we measured by image processing
f28g the shape of the tip parabola and deduced a tip radius
r=1.4±0.1mm. This value corresponds to a valuer2V=k
=7.5 mm3/s which is in good agreement with the value
found for crystals of NH4Br grown in a solution withTE
=35 °C, as reported by Maureret al. f28g.

We then turn our interest to the large scale structure of the
dendrite. The system is limited by mass diffusion for which
the diffusion constant isD=2 10−9 m2/s, so that for this den-
drite the Peclet numbersPe=rV/2Dd is Pe,10−3. At such a
low velocity of growth the diffusion length is large and a
self-affine regime of growth is observed in a large range of
length scales. As in our previous worksCouderet al. f19gd
the half area covered by the structureson the y8.0 sided
grows son the averaged with the distance to the tip as

Ssx8d = S8r

9
D1/2

x83/2, s1d

wherex8 is the distance to the tip. This means that the self-
affine dendrite has a mean lateral front. The same front that
would have existed if the dendrite had not undergone a lat-
eral destabilization and had remained parabolic. It is thus
located at

yd8 = s2rx8d1/2. s2d

In the laboratory frame of reference, at a large distancex8
from the tip, the velocity normal to this front is thus on the
average

ŪN = sr/2d1/2Vsx8d−1/2. s3d

Taking into account the selection of the tip radius by which
r2V is a constantk and the normal velocity becomes

ŪN < 2−1/2k1/4V1/4t−1/2. s4d

The decrease of the normal velocity along the mean para-
bolic profile induces an increase of the diffusion length. In
the tip region it islD

T =2D /V. But along the sides the diffu-
sion length,lD

S grows with the distance to the tip as

lD
S = S2D

V
Î2

r
Dx80.5 s5d

in a given region of the laboratory frame of reference, the
diffusion length grows as the square root of time,

lD
S < 2Î2Dk−1/4V−1/4t1/2. s6d

In the case of the dendrite growing atV=3.77mm/s, the
diffusion length at the tip islD

T =0.53 mm. In Fig. 2 going
from sbd to sdd the normal velocity of the mean front de-
creases from,0.1 to ,0.06mm/s. Correlatively, the diffu-
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sion length grows fromlD
S ,2 mm to ,3 cm. These values

are always very large as compared to the size of the branches
and to their spacing. The cell thickness is small as compared
to lD

S, so that the diffusion field can be considered as two
dimensional.

2. The growth of the dominant branches

The dendrite is observed with a microscope and a video
camera which records a fixed field that the dendrite crosses
during its growth. Figure 2 shows five images of such a
recording concerning 2.2 mm of the length of the dendrite.
Note that this region was more than 1 cm away from the
initial seed so that the influence of the other dendrites grown
from the same seed was negligible. In this case the growth
was observed during a period of an hour and a half. Figure
2sad is typical of the first frames where the tip region of the
dendrite is observed. The distribution of branches resulting
from the primary instability form an irregular array with
branches having an initial average spacing of approximately
5r and various amplitudes. The four others show the typical
evolution of the side branches. The process of coarsening is
clearly visible: fewer and fewer branches continue growing

as time elapses. The branches which stop growing remain as
fossil structures. Much later, however, it can be noted that
the tip of these branches becomes facetted, before eventually
melting. The sequence shown in Fig. 2 exhibits another ob-
vious feature. The largest branches were already locally
dominant at their formation. In other terms, the dominance of
a branch appears to be entirely determined from the start.
The following measurements set this observation on a quan-
titative basis.

On an image such as Fig. 2scd we use a home-made image
processing which detects the profile of the dendrite, then its
protrusions in theOy direction. Each of these protrusions is
ascribed a numbern. It is easy to follow a branch on the
successive images because its abscissaxn is practically con-
stant. The origin of the timetn used for a given branchn is
the time when the tip of the main dendrite has passed at the
abscissaxn. We measure the positionynstnd of the tip of each
branch as a function of its own time.

Figure 3sad shows the plotynstnd of the growing length of
five of the branches of the dendrite shown in Fig. 2. They all
have a velocity which decreases as a function of time. This
means that none of the lateral branches becomes a free den-
drite. All branches remain prisoner of the diffusion front of
the main dendrite. In a loose sense, the lateral branches can
thus be considered as dendrites resulting from the instability
of a directional growth in the mean diffusion field imposed
by the main dendrite. As time elapses the front slows down
and this diffusive field thickens: correlatively there is coars-
ening and the wavelength separating active branches keeps
increasing.

A remarkable result is that the hierarchy of size of the
branches is fixed initially at the formation of the lateral
branches. A better characterization is obtained in a log-log
plot fFig. 3sbdg where each branch is observed to be fitted by
a power law growth of the type

ynstd = yn
otn

an. s7d

The velocities thus all decrease with time asVn~ tan−1. The
exponentan is constant for a given branch but depends on
how dominant the branch is at the start, i.e., how strong the
initial disturbance was. The values of thean for the branches
of Fig. 2 are given in Table I. For this dendrite, they range
from 0.51 to 0.64. We can note that this power law behavior
is only observed in a finite range of values oft. At large
times the velocity of all observed branches decreases due to
their screening off by faster branches. Even branch 6, which
is the fastest, is observed to slow down at times larger than
2000 s as it begins to be screened off by a larger branch
located outside the observed region. This screening effect is
analyzed in Sec. III A 3.

These results suggest that the stronger the initial distur-
bance, the larger the growth exponents. For this reason it is
interesting to observe situations in which a dendrite is sub-
mitted accidentally to a strong localized disturbance. Figure
4 shows such an event where a dendrite of velocity 7.7mm/s
collided with a speck of dust present in the cell. The violent
disturbance of the tip leads to a symmetrical destabilization
of the front which already has a finite amplitude very close to
the tip fFig. 4sadg. As a result, two symmetrical branches

FIG. 2. Five photographs taken respectively at a timeto and to
+300 s,to+660 s,to+1260 s,to+3180 s, of one side of a dendrite
growing at low velocityV=3.77mm/s. The length of the region
shown here is of the order ofL=2.2 mm. The labelss1d¯s10d show
the branches which have been investigated.
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form, which grow faster than usual. Their initial growth ve-
locity is close to beingV/2, half of the velocity of the main
dendrite,ssee below Sec. III B 2d. The logarithmic plotsFig.
5d shows that these branches also have a power law growth
of the type given by Eq.s7d but with an unusually large value
a=0.80. Such branches are naturally dominant over their
neighbors. In this range of Peclet numbers and in observed
regions as large as 1 cm they are observed to slow down
sa,1d and thus they still remain prisoner of the mean lateral
front.

3. The slower branches’ screening off

The second process is screening off. As time passes, the
slower branches stop growing altogether. This is observed in

Fig. 3 where the branchesse.g., 2 and 4d reach asymptotic
lengths,y2

Max and y4
Max, respectively. These branches have

stopped growing because of the screening effect due to faster
growing branches. This effect is dominated by the geometri-
cal positions of neighboring branches as can be observed in
Fig. 2. Neglecting the curvature of the parabola near the tip,
the relative position of these branches can be sketchedfFig.
6sadg as uneven branches growing from a linear base. On this
sketch we draw two straight lines from the extremity of each
branch and tangent to the most protruding neighboring struc-
tures. Whenever these neighbors are larger, they have larger
an’s so that the difference in size will increase with time. The
velocity of the small branch then decreases until it finally
stops completely. This process repeats itself, leading to a
hierarchy of screening-off processes proceeding from the
nearest to the furthest. On Fig. 6sad branchn will be screened

FIG. 3. sad The lengthsynstnd of the lateral branchess1d, s2d, s3d,
s4d, s6d, as a function of timesin secondsd. Branches 2 and 4 reach
limit lengthsy2

Max andy4
Max, respectively. The dotted line shows the

linear motionxTstd of the tip of the dendrite on the same scale.sbd
Logarithmic plot for branchess1d, s2d, s3d, ands6d. The best fits for
the power law regions correspond toa1=0.58,a2=0.51,a3=0.54,
a6=0.64, respectively.

TABLE I. Growth exponentan and screening parametersYo and
So for branches 1–8.

Branch an Yo So

1 0.58±0.01

2 0.51±0.01 0.7 0.5

3 0.54±0.01 0.75 0.45

4 0.53±0.01 0.77 0.4

5 0.54±0.01 0.73 0.45

6 0.64±0.01

7 0.52±0.01 1.0 0.46

8 0.57±0.01 0.9 0.42

FIG. 4. Four photographs taken, respectively, 1, 3, 5.4, and
15.1 s, after the collision of a dendrite growing at velocityV
=7.7 mm/s with a finite disturbance.
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off by p andq, then branchp will be screened off byq and
r and laterq will stop because of the influence ofr and s.
The process repeats itself on larger and larger scales.

If yn
Max is the maximum length reached by branchn we

define the nondimensional quantityYn as

Yn =
yn

Max − yn

yn
Max . s8d

The geometrical situation of the branchn betweenp andq
is characterized by the screening anglesun

p and un
q as

sketched in Fig. 6sbd. It turns out that the dynamically rel-
evant parameter is

Sn = tanun
p + tanun

q s9d

with tanun
p=syp−ynd / sxp−xnd and tanun

q=syq−ynd / sxq−xnd.
The time evolution ofSn can be computed from the measured
ynstnd, ypstpd, yqstqd. Figure 7sad is a semilogarithmic plot of
Ynstd as a function ofSnstd for branch 4. An exponential
decay is clearly observed showing thatYn andSn satisfy

Yn = Y0 exps− Sn/S0d. s10d

The two parametersY0 andS0 are obtained from the best
fits of the linear part of the semilog plotsfFig. 7sadg. The
values found for various branches are approximately con-
stant and given in Table I. It can be noted that they depend
neither on the scale of the process nor on the symmetry or
asymmetry of the positions of branchesp andq with regard
to branchn. The mean value ofS0 is 0.44. The values ofY0
are more scattered. When the screening-off process of branch
n begins early we find values ofY0,1. This value is found

FIG. 5. Logarithmic plot of the position of the tip of the dis-
turbed dendrite of Fig. 4 and of the length of its main lateral branch
as a function of timesin secondsd. This branch grows astap with
ap=0.80.

FIG. 6. sad Sketch of the relative positions of branches resulting
from the primary instability.sbd Definition of the screening angles
un

p andun
q when branchn is screened off by branchesp andq.

FIG. 7. sad Semilogarithmic plot ofY4 as a function ofS4, show-
ing the range of logarithmic decay of the growth of branch 4 of Fig.
2 when screened off by branches 3 and 6.sbd Linear plot of tanu4

3

and tanu4
6 and of their sumS4 as a function oft4.
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when branchn is mainly screened by a previous branchp. In
the opposite situation where the main screening comes from
a branchq, grown aftern, we obtainY0,0.75. From these
values we can deduce that in a symmetrical situation, branch
n will reach an amplitude 0.99yn

Max for un
q=un

q=45.4°sY0

,1d or for un
q=un

q=43.5°sY0,0.75d.
We have thus defined the screening-off process in purely

geometrical terms. Can this lead to a temporal description of
the growth of a given branch? We find empirically that the
time evolution of the screening factor is linearfsee Fig. 7sbdg
so thatS can be written

S= a + btn; s11d

as a result combining relationss8d ands9d the time evolution
of the branch length can be written

yn = yn
Maxf1 − l exps− mtndg s12d

with l = Y0 exps− a/S0d andm = b/S0.

The growth of an infinite array of parallel needles in a
Laplacian field was investigated by M. Adda Bediaf30g. In
his lattice shorter and larger needles alternate. The smaller
needles are then observed to undergo an exponential decay.
There are differences between this theoretical situation and
the experimental one. For instance the lattice of parallel
needles is infinite, and there is no central base from which
the needles grow. However, the screening effect is of the
same nature as observed experimentally.

B. Growth at large velocities

1. Global structure

The global structures of slow and fast 2D dendrites are
very different. As discussed above, the slow dendrites are
self-affine fractals which retain a global parabolic mean
shape. The velocities of their branches are always small com-
pared to that of the main dendritic tip. In contrast, the fast
dendrites cover a finite fraction of the 2D space and have a
wedge shaped envelope as a result of the velocity of the
branches which equals that of the main tip. The investigation
of the growth of individual branches sheds some light on the
origin of the crossover between these two regimes of growth.
Two main features are observed which will be described suc-
cessively. Near the tip there is a quantitative change in the
values of the growth exponents. Far from the tip, there is a
qualitative change as some branches escape from the diffu-
sion field of the main dendrite.

2. The initial behavior of the fast branches

In the range of velocities 20,V,50 mm/s, as the diffu-
sion length diminishes, different processes appear, both near
the tip and away from it. In all this range of velocities the
dendrite is still observed to have a classical parabolic ex-
tremity and the same mode of initial destabilization. The
above-described processes of competition between branches
are still observed. However, compared to the previous ex-
periments the rate of growth of the lateral instability is now
larger and the destabilization of the parabolic front occurs

nearer to the tip. Correlatively there is a shift of the values of
the growth exponentsan resulting from the normal fluctua-
tions. They are found to range from 0.6 to 0.9 for a dendrite
of velocity 20mm/s and from 0.8 to 1 for a dendrite of
velocity 50mm/s. As previously, the value of anan depends
on the amplitude of the initial disturbance of the parabolic
front. For Vù50 mm/s large amplitude disturbances occur
more frequently and generate branches which grow witha
=1 and thus a constant velocity. A remarkable result is that in
those cases the branch velocity is initially half that of the
dendritesas will be seen below in Fig. 10d. This is in agree-
ment with a recent finding by Hakimf31g in a model system.
Working on linear needles growing in a Laplacian field, he
considered a situation where, on a semi-infinite needle, two
lateral branches grow at a right angle. He finds analytically a
specific solution in the shape of a cross where the velocity of
the two branches is half that of the main needle.

In the range of velocities 50,V,100 mm/s the tip itself
appears strongly disturbed by instabilities which generate
frequent and large lateral disturbances. In this instability the
tip suddenly slows down and splits asymetrically, generating
two secondary tips of unequal length. Unlike what is ob-
served at larger velocities, this tip splitting fails to produce
two independent structures. The larger of the two tips accel-
erates while the other stops. This leads to the formation of a
new single tip, which in turn will become unstable by a new
tip splitting. The whole structure thus undergoes relaxation
oscillations. It is not known if this is an intrinsic destabiliza-
tion mode, or if this instability is generated by an interaction
with the cell’s walls. A quantitative investigation of the tip
structure in this range of velocities would have required
working with a fast camera and was not the aim of the
present paper. It is worth mentioning, however, because of its
implication on the behavior of lateral branches on a long
time range. Each tip splitting is a strong disturbance where
two symmetrical side branches of large amplitude are gener-
ated sFig. 8d. Finally, at very large velocities the tip of the
dendrite can also undergo a complete tip splitting. As shown
in Fig. 9, this gives rise to two dendrites which will continue
growing alongside each other.

FIG. 8. Photograph of the tip of a fast dendrite in the regime of
tip oscillations.
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3. The escape of branches

We can now turn to the evolution of branches, as observed
on a long time scale, using a weaker magnification of the
microscope.

For dendrites with 20,V,50 mm/s, the branches usu-
ally have the same evolution as described in Sec. III A: there
is coarsening and fewer and fewer branches continue grow-
ing as time elapses. In the cases where the dendrite has un-
dergone a finite disturbance something different occurs. At
some distance away from the tip the resulting branch is ob-
served to acceleratesFig. 10, insetd, before again reaching a
constant velocity. Three successive regimes of growth are
clearly identified on the plot of the length of the dominant

branch as a function of timesFig. 10d. In the initial regionsId
the branch is prisoner of the main dendrite and grows with a
power law of timeson the example shown herea=1d. Then
it acceleratessregion IId. Ultimately, in region III, the veloc-
ity becomes constant and equal to the velocityV of the main
dendrite. The branch has then escaped the main dendrite’s
diffusion front, to become an independent dendrite. For den-
drites with V,40 mm/s, this escape was only observed to
occur for those fast branches which resulted from an anoma-
lous strong disturbance of the tip. If a dendrite is grown in
the same conditions as those of Fig. 10, but without under-
going any finite disturbance, no branch escapes in the limited
duration of our experiment.

Four successive images of a faster dendritesV
=51 mm/sd are shown in Fig. 11. In the tip region the struc-
ture is similar to that discussed above, and the branches are
still disturbances of a dendrite which remains parabolic on
the average. At a certain distance from the tip some branches
are repeatedly observed to accelerate until they reach the
velocity V of the main dendrite. The most obvious feature of
the side of the global structure of a fast dendrite is that it is
formed of independent parallel branches, all growing at the
same velocitysFigs. 11 and 12d. On a given dendrite, the
branches which escape reach the same velocity after approxi-
mately the same delayt, so that the global structure acquires
a wedge shape. This organization is obvious on a photograph
sFig. 12d of a very fast dendritesV=87 mm/sd at a weak
magnification. Two straight lines at 45° from the direction of
the initial dendrite form the envelope of the branches. The
structure, though complex, is no longer a self-affine fractal;
inside the wedge the pattern covers a finite fraction of the 2D
space. The tip of the main dendrite protrudes slightly at the
vertex of the wedge. This is related to the delay necessary for
the branches to free themselves. At large velocities, branches
growing with a,1 become frequent as the loss of stability
of the tip creates large initial disturbances, and the diffusive
field becomes thinner. As a result the initial region of growth
sregion I in Fig. 10d becomes shorter and the fit by a power
law becomes less and less accurate. Some branches are ob-
served to have a velocity increasing with time very shortly
after their formation. It is not clear if they have a growth
exponenta.1 or if this is the effect of the crossover regime
of region II.

Two typical lengths can be measured. The first islE the
distance from the tip at which the branches become free.
This length islE=tV wheret is the typical escape time of the
branches. This timet is measured with a rather good accu-
racy on plots of the type of Fig. 10, where it is the limit
between regions II and III. On various dendrites obtained at
different undercoolings the evolution of this time with the
velocity was measured. As shown in Fig. 13sad, t diverges at
low velocities. The second typical length is the distance be-
tween free branches. Since they are not evenly spaced, we
measured the distancesl of as many free branches as pos-

sible and deduced an average valuel̄. We then repeated the
measurements on dendrites grown at various velocities. In
the low range of velocities the free branches are scarce so
that the average values are not precise. For a given dendrite

the two lengthslE=tV and l̄ have similar values.

FIG. 9. Photograph of a dendrite of velocityV=51 mm/s after
its tip has split.

FIG. 10. Linear plot of the position of the tip of a dendrite
grown atV=39.9mm/s and of its main lateral branch as a function
of time. The three regimes of growth are labeled I, II, and III. The
time of escapet is the limit separating II from III. Inset: photograph
of this dendrite.
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If both lE=tV and l̄ obtained for various dendrites are
plotted as a function of the diffusion lengthlD

T at the tip, no
simple relation is found. In particular for slow dendriteslE
=tV and l̄ become very large as compared tolD

T . This may
appear surprising because the independent growth of differ-
ent dendrites would be expected to occur whenever the den-
drites are separated by a distance larger than a few diffusion
lengths. But the question of the independent growth of two

side branches differs from that of the independent growth of
parallel dendrites. In order to become free, the branches must
first escape out of the diffusion field of the lateral side of the
primary dendrite. For very fast dendrites this occurs rather
close to the tip in a region where the lateral front is still
growing fast and the diffusion length is of the order oflD

T . In
contrast, in slower dendrites, the escape occurs much further
away from the tip in a region where the mean motion is slow
and where the local diffusion length has thus become large.
Only branches much further away from each other can then
become independent.

A reasonable assumption is that a branch can only become
free when it has become larger than some fraction of the
local mean diffusion length of the lateral front. This length at
a given abscissax grows as the square root of timefrelation
s6dg. Since the growth exponentsan are larger than 0.5, the
branches can, in principle, approach the diffusion front.

For these reasons the relevant comparison is that of both

lE=tV and l̄ with the local lateral diffusion lengthlD
S in the

region where this escape occurs. This lengthlD
S can be com-

puted fixingt=t in relations6d and using the values ofD and

FIG. 11. Four photographs taken respectively at a timeto and
to+9.2 s, to+13 s, to+20 s, of one side of a dendrite growing at
velocity V=64 mm/s. The length of the region shown here is of the
order ofL=2.2 mm.

FIG. 12. Photograph of the global structure of a dendrite grow-
ing at velocityV=87 mm/s. The length of the region shown here is
L=3.6 mm.
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k specific to our experiment. The resulting plot oftV and l̄,
as a function oflD

S, given on Fig. 13sbd shows a linear de-
pendence. In our experimental conditions the best fit is

tV < s0.18 ± 0.03dlD
S . s13d

In other terms, as time passes, a branch can escape out of
the mean lateral front when its distance to the tipsor its
distance to its neighborsd becomes larger than a fifth of the
local diffusion length. It can be noted, however, that the data
for very slow dendrites are slightly above the linear fit. This
could be due to the scarcity of branches with largean at
these velocities.

The linear relations13d can be used to find an empirical
relation for the timet as a function ofV. In our experimental
conditions si.e., D=2310−9 m2/s andr2V=k=7.5 mm3/sd
we find

t < s4 3 105dV−2.5 s14d

which provides a good fit for the measured valuesfFig.
13sadg.

IV. DISCUSSION AND CONCLUSION

The measurements performed on very slow dendrites
have provided a phenomenological description of a process
which could be called convective coarsening. Doughertyet
al.17 recorded, as a function of time the half width of the
dendrite at a constant distance from the tip. Close to the tip
the power spectrum corresponds to the oscillations due to the
formation of the branches. This spectrum exhibits a broad
peak at a temporal frequencyf t corresponding to a maximum
of the amplification in the tip region. This maximum corre-
sponds to the observed mean wavelength of the side
branches which is of the order of 4r in this region. However,
all the frequenciesf , f t are also amplified and there is a shift
towards more amplification of the low frequency further
away from the tip, as coarsening takes place.

A way to understand this process is to note that the mean
normal velocity of the lateral front of a dendrite decreases
constantly because of the curvature of the parabola. In order
to understand the wavelength selection near the tip, Caroliet
al. f16g used this argument to perform a modified version of
the Mullins and Sekerka linear stability analysis. They com-
puted the shift of the most amplified wavelength as the dis-
turbance is advected away from the tip. Their analysis was
classical with the surface tension being the stabilizing factor
of the instability.

Here the coarsening should rather be analyzed in the
framework of the mean field theory introduced by Breneret
al. f31,32g. In this theory the Laplacian itself plays the role
of an effective surface tension. It should be noted that the
coarsening observed here concerns highly nonlinear spiky
branches which are very different from the growth of a sinu-
soidal disturbance of weak amplitude. However, the general
process is the same; as the wave packets are advected away
from the tip, the normal velocity decreases and the range of
amplified wavelengths shifts to larger and larger values. Con-
stantly decreasing frequencies of the initial noise are thus
amplified. This is yet another generalization of the convec-
tive character of the instabilityf8g. From this viewpoint there
is a striking analogy of the coarsening with the evolution of
the instabilities of a shear flow in the mixing layer configu-
ration f25g. In such experiments the initial destabilization
gives rise to irregular vortices with a preferential wave-
length. Further downstream, as the shear layer becomes
thicker, there is an amplification of lower frequencies and the
vortices undergo pairing processes by which the pattern’s
wavelength grows.

The same process can also be understood as the result of
the competition of parallel needles growing in a long-range
diffusion field. In this perspective a slightly larger branch

FIG. 13. sad Evolution of the time of escapet as a function of
the dendrite’s velocityV. The curve is the fit by relations14d. sbd
Plot of the length of escapetV sblack dotsd and of l̄ the mean
distance between free branchessopen trianglesd as a function oflD

S

the lateral diffusion length in the region of escape. The line is the fit
by relations13d.
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grows faster than its neighbors by a simple point effect. It
does so at the expense of the growth of its neighbors. Since
the mean growth is always maintained, the material that
would have crystallized on the weaker branches is redistrib-
uted and contributes to the growth of faster branches with
largeran. As a dominant branch grows, however, it becomes
sensitive to the presence of other dominant branches located
at larger distances along the lateral front. We have shown
that this screening is a function of the sum of tangents of the
anglesuq

r anduq
s. It will only have a noticeable effect when

the lengths sor rather the length differencesd of these
branches will become comparable to their spacing. In prac-
tice, with branches resulting from the normal noise, the
screening effect remains weak between branches separated
by a distance larger than their own length.

For faster dendrites, the range of values of the exponents
an corresponding to the normal random fluctuations of the
tip, shifts to larger values. This can be understood if we
consider the same disturbance of the interface in dendrites of
various velocities. The smaller the diffusion length, the
larger the number of isoconcentration lines disturbed by a
protrusion of a given amplitude. For this intuitive reason the
same disturbance will grow with largera’s in faster den-
drites. This is confirmed by the results of the simulations
using the phase field model presented in Part II.

For fast dendrites there is a crossover; at a certain distance
from the tip, the dominant branches are observed to acceler-
ate before reaching the constant velocity of a free dendrite.
The transition to this regime of growth is subcritical: in the
intermediate range, the branches resulting from the normal
noise at the tip remain prisoner of the thickening lateral dif-
fusion field of the dendrite. Only branches due to a large
disturbance of the tip can reach the escape velocity. At very
large velocities this escape occurs near the tip so that a
wedge shaped array is formed, which occupies a finite frac-
tion of the plane.
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APPENDIX

A phenomenological description of this process can be
given in the following way. The largest values of thean are
a function of the dendrite’s velocity. In a piecewise linear
approximation we find thatan

max<0.5+0.01V for 10,V
,50 mm/s, andan

Max=1 for Vù50 mm/s.
If we write that a branch becomes free when its length

equals the local diffusion length of the mean front we get

Î2rVt0.5+0.01V = S2DÎ 2

rV
Dt0.5. sA1d

We use the selection condition of our dendrite. In our
experimental conditions we foundr2V=7.5 mm3/s.

For V,50 mm/s the fastest branches catch up the mean
diffusion front at a time

tt = S 2D
Î7.5V

Ds1/0.01Vd

. sA2d

For velocities larger than 50mm/s the fastest branch
grow with an=1 so that there is a crossover to a value of this
time:

tt = S 2D
Î7.5V

D2

. sA3d

These times provide an empirical fit to the observed values
of t.
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